
Introduction

In this lab, we will be exploring different functionalities of the Pi, and use them to gather data of
the environment the SmartPlug is in. The Camera Module is an officially supported accessory
for the Raspberry Pi. You will find that using a VNC will come in handy for working with the
Camera Module. Additionally, the Pi has Bluetooth on board, so we are able to do some exciting
things with this. We will also deal with posting semantic data to the API in order to provide
access to the new data we are obtaining.

Pi Camera and basic Computer Vision

For the first part of this lab we will be using the Pi’s camera module to do some analysis on what
the Pi is seeing. Specifically, we will attempt to detect (not recognize) faces as well as detect
movement. This would be handy in a security device application!

In order to accomplish those tasks, we will be using the OpenCV library (​www.opencv.org​). This
library provides most of the functions that will help us in achieving our goals.

First off, we need to install OpenCV. Run:

sudo apt-get install python-opencv

This will take a long time, so feel free to work on other portions of the lab while this task finishes.

In order to detect faces, we will be performing object detection using Haar feature-based
cascade classifiers, with a cascade specific to faces. You can read OpenCV’s documentation on
this topic at: ​http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html​. The cascades
they are referring to can be found at:
https://github.com/opencv/opencv/tree/master/data/haarcascades

Additionally, movement detection can be accomplished with background subtraction. The
tutorial can be found here: ​http://docs.opencv.org/trunk/db/d5c/tutorial_py_bg_subtraction.html

Now, for the ​challenge.​ You must implement both algorithms to perform real time analysis on
the video input. You can use whatever code you like, but feel free to use the template attached
on the next page. Do not feel intimidated, this is not a Computer Vision lab, you are simply
required to have a big-picture understanding of the process and implement the simple functions.

http://www.opencv.org/
http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html
https://github.com/opencv/opencv/tree/master/data/haarcascades
http://docs.opencv.org/trunk/db/d5c/tutorial_py_bg_subtraction.html

import​ cv2
import​ sys

Camera Imports

from​ picamera​.​array ​import​ PiRGBArray
from​ picamera ​import​ PiCamera

Sleep function to wait on Camera

from​ time ​import​ sleep

Get user supplied values

cascPath ​=​ sys​.​argv​[​1​]

Create the haar cascade

face_cascade ​=​ cv2​.​CascadeClassifier​(​cascPath​)

Capture Object

camera ​=​ PiCamera​()
camera​.​resolution ​=​ ​(​640​,​480​)
camera​.​framerate ​=​ ​32
rawCapture ​=​ PiRGBArray​(​camera​,​ size​=(​640​,​480​))

Wait for the camera to start up

sleep​(​1.0​)

for​ frame ​in​ camera​.​capture_continuous​(​rawCapture​,​ format​=​"bgr"​,​ use_video_port​=​True​):
 ​# Grab an image from the camera
 image ​=​ frame​.​array

 ​# Shrink it down
 height​,​ width ​=​ image​.​shape​[:​2​]
 image ​=​ cv2​.​resize​(​image​,(​width​/​2​,​height​/​2​),​interpolation​=​cv2​.​INTER_CUBIC​)

 ​# Your code here...
 ​# Follow the OpenCV tutorial to use their detection algorithms!

 ​# Press 'q' to quit
 key ​=​ cv2​.​waitKey​(​1​)​ ​&​ ​0xFF
 rawCapture​.​truncate​(​0​)
 ​if​ key ​==​ ​ord​(​"q"​):
 ​break

Semantic API calls

From time to time, you might want to post information that the API does not support. The API
has the ability to record temperature, humidity, and light, but it can’t record something like
“something moved” or “face detected”. In order to provide users with a bit more flexibility, we
added a “semantic label” functionality. Semantic labels permit users to input any label they
choose to push to the API, so a semantic label of “movement” would create a field for
“movement” events. For example, to add a semantic event:

Add Semantic Data

POST /api/v1/devices/{id}/semantic

ARGUMENTS

META Arguments Type Required Default

data String yes

semantic_label String yes

HEADER

Header Arguments Type Required Default

Token-Authorization String yes

So every time you wish to add a “movement” event, you would set semantic_labe to
“movement” and fill out the other information accordingly.

Create a main_camera.py file which is constantly looking for movement. In your routine,
add a semantic_label POST request for movement. Every time the camera detects
movement, post it to the API.

Here is the GET request as well:

Get Semantic Data

GET /api/v1/devices/{id}/semantic/{count?}

This method retrieves all semantic events recorded by a named device.

PARAMETER

Parameter Arguments Type Required Default

count int no

HEADER

Header Arguments Type Required Default

Token-Authorization string yes

NOTE:​ This will return all semantic events, not just those under a specific label.

Bluetooth

We will now add Bluetooth functionality to our SmartPlug. We will be using the pybluez
bluetooth module, which can be found at:
https://github.com/karulis/pybluez

The documentation for this module can be found inside the repository, under the docs/ folder.

Our implementation of the bluetooth tool will accomplish three things:

1. Scan the area for devices
2. Keep a list of all devices in the area
3. Update the list when devices leave or are turned off.

Setup

To get this part working, we need to install the following libraries through the terminal: bluez,
bluetooth, and python-bluez, which lets you work with bluetooth from a python script. To do this
we use the commands:

sudo apt-get update

sudo apt-get install bluetooth

sudo apt-get install bluez

sudo apt-get install python-bluez

Requirements

You must write a class named ​BluetoothSearchHub.py​ which contains the following functions:

- start_bluetooth_scan()
- Scan the area for all devices, new and preexisting.

- ping_addresses()
- Pings all registered devices, in order to determine whether they are active or not.

- check_devices()
- Updates the device list.

The use of additional functions is highly recommended in order to accomplish complex tasks
(also, don’t forget your __init__!)

https://github.com/karulis/pybluez

Turn in instructions

- Submit all your code to github.
- Submit a picture of your working code (face detection and movement)
- Email a PDF file with all pertinent analysis, your device’s MAC Address, and your GitHub

repository URL.
- Include Team name in Filename (TeamName_Lab5.pdf)
- State which API credentials were used

